Exemplar Genetics Wins Phase I

Sioux Center-based Exemplar Genetics has been awarded a Phase I SBIR grant from the National Institutes of Health. The funding will be used to support the company's development of a pig model for atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, which is the most common cause of death in the United States. However, the lack of an animal model that accurately replicates all of the manifestations of human atherosclerosis has been a major barrier to the development of effective therapies for this deadly disease. While several mouse models of atherosclerosis have been generated, they fail to develop the complex atherosclerotic lesions that are typical of the human disease. In contrast to mice, the physiology and anatomy of the porcine cardiovascular system closely resembles that of humans. The animal model being developed by Exemplar Genetics will include cells with a targeted disruption in the LDL receptor (LDLR) gene. This animal model will provide academic and industrial research communities with an opportunity to better understand the disease and its pathogenesis and to develop and test new therapeutics and preventative strategies. Exemplar Genetics has also successfully commercialized other pig models of human disease, including cystic fibrosis, and provides regulatory, model development, and animal housing and husbandry services. For more information, visit: http://www.exemplargenetics.com/index.htm.

Reauthorization Still Not Done

It came close to being done in the 111th Congress, but reauthorization of the SBIR/STTR programs has been left to the 112th. The programs are currently authorized through January 31, 2011 through a continuing resolution (CR), the ninth in a long series of CRs that have kept these programs going since they were originally set to lapse in 2008 and 2009; the last successful reauthorization of the SBIR program was back in 2000. Efforts to pass reauthorization legislation will now have to be rebooted in the new legislative session. However, there now appears to be a framework that both the House and Senate can agree on, so hopefully reauthorization will occur this year.
Grants.gov Password Reset Update

As a reminder to Grants.gov users, the following information was recently posted on the Grants.gov Blog: “When an EXISTING E-Biz POC logs in for the first time after the October 11, 2010 Security Build, the E-Biz POC must enter the DUNS and for the Password field, enter the MPIN. Once verified, the system will immediately request the E-Biz POC to change the password.

When a NEW E-Biz POC account is established, a system-generated password will be sent in an email to be used to log in to the account. This new password will be sent to the CCR email address on file with Grants.gov. If your email is not the email on file with CCR, you may not be the E-Biz POC. Please check with CCR or your organization for the E-Biz POC contact.

The "I Forgot My Password/Unlock My Account" functionality for an E-Biz POC with an established password, is a new option that allows an E-Biz POC to request a system-generated password through an email message. The system will send the email to the address in the user’s profile.

The Grants.gov system is currently designed to grant log in access to the E-Biz POC using the DUNS and new password. When the DUNS and MPIN are shared within an organization and the password has been changed, the system will deny access when different passwords are entered for the same DUNS.”

More information about new password rules for E-Biz POCs is available here. If you are new to Grants.gov and need assistance, the Contact Center can be reached at 1-800-518-4726 24 hrs a day, seven days a week.

NIH Omnibus Solicitation to be Released

The National Institutes of Health (NIH) of the Department of Health and Human Services anticipates releasing its 2011 Omnibus SBIR and STTR solicitation on or about January 15, 2011. Participating organizations will include NIH, the Centers for Disease Control, and the Food and Drug Administration.

Closing dates for non-AIDS related topics will be April 5, August 5, and December 5, 2011, while closing dates for AIDS-related topics will be May 7 and September 7, 2011, and January 7, 2012. Note that all applications must be submitted electronically through Grants.gov, and that proposers must be registered on Grants.gov and the eRA Commons.

For more information about the NIH SBIR/STTR programs, see: http://grants.nih.gov/grants/funding/sbir.htm.

ED (NIDRR) FY2011 Phase I SBIR Solicitation

The Office of Special Education and Rehabilitative Services (OSERS) / National Institute on Disability and Rehabilitation Research (NIDRR) of the Department of Education (ED) has indicated it will soon release its FY2011 Phase I SBIR solicitation. Note that this offering is separate and distinct from the two solicitations that were released earlier by ED’s Institute for Education Sciences. The OSERS/NIDRR program has five priority areas for research and development of technology for individuals with disabilities to: promote access and integration of individuals with disabilities; enhance sensory or motor functions through the development of technology to improve functional capacity; enhance workforce participation; enhance community participating and living; and improve interventions and increase use of healthcare resources.

Up to 15 Phase I awards of up to $75,000 for projects of up to six months in duration may be made under this announcement. The application deadline is February 11, 2011. More information is available here.
Key Solicitation Dates

- The deadline for the Department of Homeland Security’s FY2011.1 Phase I SBIR solicitation is January 6, 2011.
- The deadline for AIDS-related topics for NIH SBIR/STTR grant applications is January 7, 2011.
- The deadline for the DoD’s FY2011.1 SBIR solicitation is January 12, 2011 at 6 am ET.
- The deadlines for the Department of Education’s IES FastTrack SBIR solicitations will January 18 (ED-IES-11-0009) and January 20 (ED-IES-11-R-0014), 2011.
- The deadline for NIST’s FY2011 Phase I SBIR solicitation is January 28, 2011.
- The deadline for the DoD’s FY2011.A STTR solicitation is March 30, 2011 at 6:00 am ET.
- The deadline for non-AIDS-related topics for NIH SBIR/STTR grant applications is April 5, 2010.

For more information on these solicitations, visit: www.sbir.gov.

DoD STTR 2011.A Solicitation

The Department of Defense (DoD) 2011.A STTR solicitation will be released January 27, 2011. Proposals will be accepted beginning February 28, and the solicitation will close on March 30, 2011 at 6:00 am EST. All proposals must be prepared and submitted electronically through the DoD SBIR/STTR Electronic Web Site. Proposers must also be registered in the Central Contractor Registration.

Between January 27 and February 27, 2011, proposers may talk directly with Topic Authors. Direct communication between proposers and Topic Authors is not permitted beginning February 28, 2011. However, proposers may submit written questions regarding solicitation topics through the SBIR/STTR Interactive Topic Information System.

For more information, go to: http://www.dodsbir.net/. To search for topics, click here.

Small Business Postdoctoral Research Diversity Fellowship

The National Science Foundation (NSF) has recently announced the availability of Small Business Postdoctoral Research Diversity Fellowships.

The program is designed to help NSF Phase II SBIR awardees by funding postdoctoral positions that will help small businesses accelerate their research and also broaden participation by underrepresented groups in the SBIR program.

To be eligible to apply, the small business must have an active Phase II SBIR award from NSF; applicants for the fellowships must be US citizens, US nationals or US permanent residents, and must have received must have received a Ph.D. degree in a NSF-supported science, technology, engineering or mathematical (STEM) discipline in the three years prior to the application date. Each research fellow will receive a stipend of at least $75,000 plus health insurance benefits. The host company, however, will provide only $10,000 toward the stipend as well as a $2,500 administrative fee.
High Aspect Ratio Metallic Structures for Use as Transparent Electrodes
(ISURF #3766)

Efforts to develop new energy sources and more energy efficient devices has lead to advancements such as organic solar cells (OSC) and organic light emitting devices (OLEDs). These advancements have included the development of processing techniques that offer lower cost and more simple fabrication methods, as well as the ability to employ flexible substrates in fabrication. Most OSCs and OLEDs use indium tin oxide (ITO)-coated substrates as the anode electrode since it provides good transparency for visible light and low sheet resistance for electrical current conduction. However, the use of ITO for anode electrodes suffers from several drawbacks, including brittleness, high cost, poor mechanical stability, poor chemical compatibility with active organic materials, and high cost due to limited indium availability. As a consequence, there has been an active search for conducting electrodes with optical and electrical properties that are the same or better than ITO, and which could lead to improved device performance. Potential replacements for ITO include carbon nanotube networks, random silver nanowire meshes, and patterned nanowire grids. Carbon nanotube networks and random silver nanowire meshes have suitable optical transparency, but their electrical conductivities are not as good as that for ITO and they also suffer from current shunting. Patterned nanowire grids have good visible transparency, but their sheet resistance is significantly higher than that for bulk metals (although it is similar to that for ITO). To address these limitations, ISU and Ames Laboratory researchers have developed a method for fabricating high aspect ratio metallic structures that can be used as transparent electrodes for organic solar cells. Because these structures have high light transmission and superior electrical conductivity, they may also enhance solar cell performance. In addition, different metallic materials may be chosen to the address requirements of specific applications such as OSCs or OLEDs. These structures may also have utility as infrared heat control filters due to their high reflection of infrared radiation, and are fabricated using techniques amenable to high throughput and mass production. Since the electrodes can be fabricated on flexible substrates, applications involving flexible displays and flexible solar panels may be enabled.

For more information on this and other technologies available for licensing, go to: www.techtransfer.iastate.edu.